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Abstract 
This paper examines the explicit communication 

characteristics of several sophisticated scientific 
applications, which, by themselves, constitute a 
representative suite of publicly available benchmarks 
for large cluster architectures. By focusing on the 
Message Passing Interface (MPI) and by using 
hardware counters on the microprocessor, we observe 
each application's inherent behavioral characteristics: 
point-to-point and collective communication, and 
floating-point operations. Furthermore, we explore the 
sensitivities of these characteristics to both problem 
size and number of processors. Our analysis reveals 
several striking similarities across our diverse set of 
applications including the use of collective operations, 
especially those collectives with very small data 
payloads. We also highlight a trend of novel 
applications parting with regimented, static 
communication patterns in favor of dynamically 
evolving patterns, as evidenced by our experiments on 
applications that use implicit linear solvers and 
adaptive mesh refinement. Overall, our study 
contributes a better understanding of the requirements 
of current and emerging paradigms of scientific 
computing in terms of their computation and 
communication demands. 

1 Introduction 
Historically, users have written scientific 

applications for large distributed memory computers 
using explicit communication as the programming 
model. This trend crystallized with the creation of the 
Message Passing Interface (MPI) specification [11, 22], 
which simplified numerous issues for both application 
developers and system designers. As a result, 
application developers stabilized on the MPI 
programming model and this has facilitated the ongoing 
development of a considerable number of applications 
based on MPI. Although MPI provides a common 
foundation for explicit communication, its wide range 
of functionality promotes a diverse set of application 
communication characteristics due to variations in 
application domain, algorithm, software design, and 
problem size.  

Nevertheless, these communication characteristics 
[9] are critically important to the design of large scale 
computing systems for three reasons. First, design 
tradeoffs for any computer architecture hinge on 
specific properties of the system’s proposed workload. 
Second, application developers must use algorithms 
appropriate for their target system architecture. Third, 
system software, such as the MPI library, must be 
optimized for the target architecture and the application 
workload. 

1.1 Key Insights and Contributions  
The main objective of our efforts is to quantify the 

communication characteristics of several scientific 
applications from the perspective of MPI and 
independent of the target architecture. In particular, for 
a wide range of existing scientific applications, we 
quantify their inherent behavioral characteristics: point-
to-point communication, collective communication, and 
floating-point operations. To expose the key 
relationships among experiment parameters, we also 
study the effects of scaling both the problem size and 
the number of processors. Our experiments include 
applications that simulate radiation transport, 
turbulence, materials modeling, and fluid dynamics. We 
also compare and contrast an adaptive mesh refinement 
framework against traditional uniform mesh 
applications.  

Earlier work [9] claimed a wide range of 
communication characteristics across a set of smaller 
applications. Our findings strengthen these results and 
we contribute several new observations for 
communication characteristics, such as small collective 
payload sizes, which is strikingly consistent across 
applications. In addition, we highlight the impact of 
adaptive methods on communication requirements.  

MPI provides a unique opportunity to study these 
aspects. First, although applications can use a variety of 
communication routines to achieve similar types of 
communication, users typically strive to minimize the 
amount of communication. Second, MPI provides 
higher levels of abstraction that hide implementation 
complexity. This allows us to identify complex 
operations, such as reductions, which previous studies 



 
 

 

were not able to consider. 
The core of this paper discusses these issues in 

more detail. In Section 2, we outline our experiment 
methodology. Following this, we introduce our 
applications in Section 3. Then, in Section 3.5, we 
present the results of our evaluation and describe our 
important observations. Section 5 describes related 
work. Finally, Section 6 concludes. 

2 Methodology 
We empirically evaluated five scientific 

applications on one platform; our results are not from 
simulation or analytical modeling. In order to obtain the 
results presented later in the evaluation section, we 
created a list of important characteristics that we wished 
to quantify. We then analyzed each application with a 
number of experiments to capture characteristics of 
interest, varying parameters, such as problem size, to 
explore relationships among characteristics.  

We characterize our applications along four 
dimensions: point-to-point communication, collective 
communication, memory load operations, and floating 
point operations. 
• For point-to-point communication, we measure 

distributions for number of messages, type, 
payload size, and size  of destination clique. 

• For collective communication, we determine the 
distributions for type, frequency, and payload size. 

• To understand the amount of computation in the 
application, we measure the number of memory 
load operations and the number of floating point 
operations between significant MPI call sites. 

In addition, we expose how these four dimensions scale 
with both input problem size and the number of tasks. 

2.1 Platform 
We ran our tests on an IBM SP system, located at 

Lawrence Livermore National Laboratory. This 
machine is composed of sixteen 222 MHz IBM Power3 
8-way SMP nodes, totaling 128 CPUs. Each processor 
has three integer units, two floating-point units, and two 
load/store units. Its 64 KB L1 cache is 128 way 
associative with 32 byte cache lines and L1 uses a 
round-robin replacement scheme. The L2 cache is 8 
MB in size, which is four-way set associative with its 
own private cache bus. At the time of our tests, the 
batch partition had 15 nodes and the operating system 
was AIX 4.3.3. Each SMP node contains 4GB main 
memory for a total of 64 GB system memory. A Colony 
switch--a proprietary IBM interconnect--connects the 
nodes. We compiled the various tests with the IBM XL 
and KAI Guide compilers using IBM's MPI library in 
user-space mode. Our test jobs ran on dedicated nodes, 
although other jobs were concurrently using the 
network.  

2.2 Data collection 
At the highest level, we empirically measure our 

data by tracing both the MPI and computation activity 
during execution. For communication, we record all 
MPI operations with their respective parameters. For 
computation, we use hardware counters on the 
microprocessor to capture specific data about each 
block of computation between significant MPI call 
sites. This strategy allows us to collect relevant yet 
limited information about application communication 
and computation. 

During execution, our tracer records fixed-sized 
events to a local memory buffer. When this memory 
buffer is filled, the tracer writes this information to a 
file stored on the node's local disk. Many of our 
applications never fill their local buffer, so they never 
spill to local disk. At the end of application execution, 
the tracer collects these events from each node and 
merges them into one trace file. We then analyzed the 
trace files offline. Most trace-based performance 
analysis systems, including PICL, Pablo, Tau, and 
Paraver [10, 16, 19, 21], use this approach.  

For communication activity, our tracing system 
takes advantage of MPI’s profiling layer by capturing 
information about each MPI call. For each MPI call 
site, the tracer captures the type of MPI call, parameters 
for that call, timestamp, call duration, and call site 
stacktrace. This provides sufficient information to 
identify different communication phases. 

For comp utation, we capture data from hardware 
counters periodically. This measurement paradigm 
provides precise information with low overhead and at 
a sufficient level of granularity.  

To capture this data, we rely on eight hardware 
counters in the IBM Power3 and program them to count 
events of interest to our study. First, we capture the 
number of cycles and completed instructions. Second, 
we capture the number of floating point operations, 
which are typically less sensitive to compiler 
optimization than other instructions. Third, we measure 
the number of memory loads. From this set of hardware 
events, we can calculate valuable measures that include 
cycles per instruction and flop to load ratio. 

This accurate information has been carefully 
selected to allow us to reduce the size of our trace files 
while still allowing us to relate computation to 
communication. Furthermore, we can use this 
information to determine scaling effects for 
computation empirically. In this work, we define a 
block of computation as any work that occurs between 
two significant MPI call sites. We distinctly identify 
these blocks by using the call site stacktraces. 

2.3 Application Phases 
Virtually all scientific applications maintain a 

notion of simulation time  and for many applications, the 



 
 

 

communication and computation activity for each 
timestep is static. For this reason, we focus our 
measurements on the activity for one timestep of each 
application. For those applications that have changing 
communication patterns [20], such as adaptive mesh 
refinement, we pay special attention, and report the 
communication characteristics for several different 
timesteps of the application. 

3 Applications 
For our investigation, we targeted a substantial 

number of very sophisticated scientific applications. 
Table 1 provides an overview of our applications. The 
language for the application represents the bulk of the 
languages used in the application source code, although 
most of these complex applications are mixed language. 
Observed phase of application execution  identifies the 
specific phase of application’s execution we measured. 
Primary MPI functionality shows the significant MPI 
calls detected during the observed phase. The respective 
references provide more detail on each application. In 
addition, the source code for each application is also 
available from the ASCI Purple Benchmark website 
(www.llnl.gov/asci/platforms) with the exception of 
SAMRAI, which is available from CASC 

(www.llnl.gov/CASC).  

3.1 sPPM 
sPPM [18] solves a 3-D gas dynamics problem on a 

uniform Cartesian mesh, using a simplified version of 
the Piecewise Parabolic Method. The algorithm makes 
use of a split scheme of X, Y, and Z Lagrangian and 
remap steps, which are computed as three separate 
sweeps through the mesh per timestep. Message passing 
provides updates to ghost cells from neighboring 
domains three times per timestep. 

3.2 SMG2000 
SMG2000 [4] is a parallel semicoarsening 

multigrid solver for the linear systems arising from 
finite difference, finite volume, or finite element 
discretizations of the diffusion equation 

fuuD =+∇⋅∇ σ)( on logically rectangular grids. 
The code solves both 2-D and 3-D problems with 
discretization stencils of up to 9-point in 2-D and up to 
27-point in 3-D. Applications where such a solver is 
needed include radiation diffusion and flow in porous 
media. Our examination includes both the setup of the 
linear system and the solve itself. Note that this setup 
phase can often be done just once, thus amortizing the 
cost of the setup phase over many timesteps. This trait 

is relatively common in implicit 
timestepping codes. 

3.3 Sphot 
Sphot is a 2-D photon 

transport code. Photons are born 
in hot matter, and tracked 
through a spherical domain that 
is cylindrically symmetric on a 
logically rectilinear, 2-D mesh. 
Monte Carlo transport solves 
the Boltzmann transport 
equation by directly mimicking 
the behavior of photons as they 
are born in hot matter, move 
through and scatter in different 
materials, are absorbed or 
escape from the problem 
domain. Particles are born with 
an energy and direction that are 
determined by using random 
numbers to sample from 
appropriate distributions. This 
code tracks particles through a 
logically rectangular, 2-D mesh 
that is internally generated.  

 
 

Table 1: Application Overview 
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sPPM F77 3-D gas dynamics problem 
on a uniform Cartesian 
mesh using a simplified 
version of the Piecewise 
Parabolic Method 

One double 
timestep. 

MPI_Allreduce 
MPI_Isend 
MPI_Irecv 
MPI_Wait 

SMG2000 C Semicoarsening multigrid 
solver for linear systems. 

Solve of one 
linear system 
including setup 
of linear 
system. 

MPI_Allreduce 
MPI_Isend 
MPI_Irecv 
MPI_Wait 
MPI_Waitall 

SPHOT F77 2-D photon transport code 
using Monte Carlo 
transport 

One timestep. MPI_Barrier  
MPI_Irecv 
MPI_Reduce 
MPI_Send 
MPI_Waitall  

Sweep3D F77 Solver for the 3-D, time-
independent, particle 
transport equation on an 
orthogonal mesh using a 
multidimensional wavefront 
algorithm 

One timestep. MPI_Allreduce 
MPI_Bcast 
MPI_Send 
MPI_Recv 

Samrai C++ 3-D shock tube 
implemented with 
structured adaptive mesh 
refinement 

One problem at 
two non-
consecutive 
timesteps. 

MPI_Allreduce 
MPI_Isend 
MPI_Irecv 
MPI_Test 
MPI_Wait 

 



 
 

 

3.4 Sweep3D 
Sweep3D [13, 14]  is a solver for the 3-D, time-

independent, particle transport equation on an 
orthogonal mesh and it uses a multidimensional 
wavefront algorithm for "discrete ordinates" 
deterministic particle transport simulation. Sweep3D 
benefits from multiple wavefronts in multiple 
dimensions, which are partitioned and pipelined on a 
distributed memory system. The three dimensional 
space is decomposed onto a two-dimensional 
orthogonal mesh, where each processor is assigned one 
columnar domain. Sweep3D exchanges messages 
between processors as wavefronts propagate diagonally 
across this 3-D space in eight directions. 

3.5 Samrai 
The SAMRAI (Structured Adaptive Mesh 

Refinement Application Infrastructure) library [23] is 
an object-oriented C++ software framework for the 
development of computational physics applications 
using structured adaptive mesh refinement (AMR) 
technology. SAMR dynamically adapts its hierarchy of 
spatial and temporal refinement levels to follow 
interesting features in the evolving simulation, focusing 
computer resources on these localized regions of the 
computational domain. This hierarchy consists of 
several mesh levels where all cells at a particular level 
have the same mesh resolution. Each level is composed 
of a collection of patches, each of which is a logically 
rectangular collection of computational cells. A patch 
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sPPM 32 1.00 10554 2.91 2652 2.92 6887 2.93 30 0.88 26.3 1.87 5 0.88 2 1.00 14 1.00
sPPM 48 1.50 7081 1.95 1773 1.95 4617 1.97 32 0.94 20.2 1.43 5.33 0.94 2 1.00 14 1.00
sPPM 64 2.00 5356 1.48 1340 1.47 3483 1.48 33 0.97 17.2 1.22 5.5 0.97 2 1.00 14 1.00
sPPM 80 2.50 4317 1.19 1081 1.19 2800 1.19 33 0.97 15.3 1.09 5.6 0.99 2 1.00 14 1.00
sPPM 96 3.00 3630 1.00 909 1.00 2349 1.00 34 1.00 14.1 1.00 5.67 1.00 2 1.00 14 1.00
SMG2000 32 1.00 177 1.11 52 1.11 0.4 4.00 16722 1.09 2.2 0.76 23.5 0.37 15 1.00 8.11 0.99
SMG2000 48 1.50 171 1.08 50 1.06 0.3 3.00 16535 1.08 2.5 0.86 35.75 0.56 15 1.00 8.25 1.01
SMG2000 64 2.00 168 1.06 49 1.04 0.2 2.00 16444 1.07 2.7 0.93 41.88 0.65 15 1.00 8.17 1.00
SMG2000 80 2.50 164 1.03 48 1.02 0.2 2.00 15787 1.03 2.8 0.97 55.35 0.86 15 1.00 8.18 1.00
SMG2000 96 3.00 159 1.00 47 1.00 0.1 1.00 15306 1.00 2.9 1.00 64.33 1.00 15 1.00 8.19 1.00
Sphot 32 1.00 14031 0.87 2888 0.77 5676 1.00 4 1.00 360b 1.00 0.97 0.98 4 1.00 0 1.00
Sphot 48 1.50 14050 0.87 2896 0.78 5675 1.00 4 1.00 360b 1.00 0.98 0.99 4 1.00 0 1.00
Sphot 64 2.00 14841 0.92 3209 0.86 5676 1.00 4 1.00 360b 1.00 0.98 0.99 4 1.00 0 1.00
Sphot 80 2.50 14780 0.92 3185 0.85 5676 1.00 4 1.00 360b 1.00 0.99 1.00 4 1.00 0 1.00
Sphot 96 3.00 16151 1.00 3727 1.00 5677 1.00 4 1.00 360b 1.00 0.99 1.00 4 1.00 0 1.00
Sweep3D 32 1.00 1397 2.66 536 2.73 766 2.99 156 0.91 5.2 1.68 3.25 0.91 5 1.00 28.8 0.36
Sweep3D 48 1.50 956 1.82 366 1.87 511 2.00 164 0.95 4.1 1.32 3.42 0.96 5 1.00 41.6 0.52
Sweep3D 64 2.00 742 1.41 281 1.43 383 1.50 168 0.98 3.6 1.16 3.5 0.98 5 1.00 54.4 0.68
Sweep3D 80 2.50 607 1.15 230 1.17 307 1.20 170 0.99 3.3 1.06 3.55 0.99 5 1.00 67.2 0.84
Sweep3D 96 3.00 526 1.00 196 1.00 256 1.00 172 1.00 3.1 1.00 3.58 1.00 5 1.00 80 1.00
Samrai 4 32 1.00 1677 0.78 553 0.68 171 2.95 131 3.05 0.87 3.00 9.875 3.00 47 1.00 39.7 1.00
Samrai 4 48 1.50 1756 0.81 629 0.77 114 1.97 87 2.02 0.58 2.00 6.58 2.00 47 1.00 39.7 1.00
Samrai 4 64 2.00 2432 1.13 909 1.12 86 1.48 65 1.51 0.43 1.48 4.94 1.50 47 1.00 39.7 1.00
Samrai 4 80 2.50 3298 1.53 1259 1.54 70 1.21 52 1.21 0.35 1.21 3.95 1.20 47 1.00 39.7 1.00
Samrai 4 96 3.00 2158 1.00 815 1.00 58 1.00 43 1.00 0.29 1.00 3.29 1.00 47 1.00 39.7 1.00
Samrai 8 32 1.00 4370 0.60 1505 0.54 377 2.90 136 2.19 1.06 2.59 19.2 1.67 11 1.00 69.1 1.00
Samrai 8 48 1.50 5798 0.80 2123 0.77 256 1.97 106 1.71 0.81 1.98 20.9 1.82 11 1.00 69.1 1.00
Samrai 8 64 2.00 5794 0.80 2151 0.78 192 1.48 93 1.50 0.61 1.49 17.3 1.50 11 1.00 69.1 1.00
Samrai 8 80 2.50 4208 0.58 1569 0.57 154 1.18 74 1.19 0.49 1.20 13.8 1.20 11 1.00 69.1 1.00
Samrai 8 96 3.00 7244 1.00 2762 1.00 130 1.00 62 1.00 0.41 1.00 11.5 1.00 11 1.00 69.1 1.00  

Table 2: Task scaling results with constant global problem size. Values are per task. 



 
 

 

contains data that represent simulation quantities in the 
region of the simulation domain covered by the patch 
region. Because AMR problems are ext remely sensitive 
to their input, we study problems at different time steps. 
Our initial problem is a sinusoidal shock wave traveling 
down a 3-D tube. The important point for this study is 
that the number of grid points remains relatively 
constant even though the mesh is refined and 
repartitioned as the shock wave travels down the tube. 
For this problem, we consider timesteps 4 and 8.  

4 Evaluation and Implications 
We present our evaluation along the dimensions 

described in Section 2. We try to preserve a realistic 
execution environment for our applications by running 
them with typical input parameters and at reasonable 
levels of concurrency. For example, we use a minimum 
of 32 tasks for our experiments.  

First, Table 2 provides an overview of the effects 
of scaling the number of processors while holding the 
global problem size constant for each application. Next, 
Table 3 illustrates the effects of scaling the local 
problem size while holding the number of processors 
constant for each application. For each metric, we 
report the absolute numbers and normalized values in 

the left and right subcolumn, respectively. 
The instruction frequency measurements illustrate 

similarities and differences for our choice of a variety 
of scientific applications. On average, every third to 
fifth instruction is a load reference, regardless of 
problem and task scaling. This indicates a good 
breakdown of large-grain parallelism by the 
applications while the potential for instruction 
parallelism remains constant during scaling 
experiments. The varying degree of floating-point 
intensity during execution illustrates our choice of a 
wide variety of applications, ranging from three to one 
floating point operation per load (sPPM, Sphot to 
Sweep3d) over only a fraction of floating ops per fixed 
op (Samrai) to largely fixed-point intensive applications 
(SMG2000). 

The adaptive application Samrai also exhibits 
changing ratios with a decrease in float ops relative to 
loads for an increasing number of tasks. For this 
application, dynamic changes over timesteps resulted in 
proportional increases in computational overhead for 
each task but the ratios between instruction types 
remained constant. This illustrates the challenge of 
increasing demand for adaptive methods, which should 
be met by dynamically changing support to meet these 

Ap
p

Ta
sk

 P
ro

bl
em

 s
iz

e 
(le

ng
th

 o
f o

ne
 d

im
en

si
on

)

Re
la

tiv
e 

Pr
ob

le
m

 S
iz

e

In
st

ru
ct

io
ns

  (
M

)

Lo
ad

 In
st

ru
ct

io
ns

  (
M

)

Fl
oa

tin
g 

po
in

t o
pe

ra
tio

ns
 (M

)

Av
g 

nu
m

be
r o

f m
es

sa
ge

s

Av
g 

Se
nd

 v
ol

um
e 

(M
B)

Av
g 

nu
m

be
r o

f d
is

tin
ct

 d
es

tin
at

io
ns

N
um

be
r o

f c
ol

le
ct

iv
es

 is
su

ed

Av
g 

Co
lle

ct
iv

e 
Pa

yl
oa

d 
Si

ze
 (b

yt
es

)

sPPM 64 1.00 1926 1.00 493 1.00 1226 1.00 33 1.00 8.8 1.00 5.5 1.00 2 1.00 14 1.00
sPPM 80 1.95 3695 1.92 924 1.87 2394 1.95 33 1.00 13.5 1.53 5.5 1.00 2 1.00 14 1.00
sPPM 96 3.38 6272 3.26 1584 3.21 4066 3.32 33 1.00 19.3 2.19 5.5 1.00 2 1.00 14 1.00
sPPM 112 5.36 9864 5.12 2473 5.02 6441 5.25 33 1.00 26 2.95 5.5 1.00 2 1.00 14 1.00
sPPM 128 8.00 14565 7.56 3743 7.59 9429 7.69 33 1.00 33.8 3.84 5.5 1.00 2 1.00 14 1.00
SMG2000 2 1.00 65 1.00 19.5 1.00 0.01 1.00 5996 1.00 1.1 1.00 41.88 1.00 16 1.00 8.2 1.00
SMG2000 3 3.38 126 1.94 37.7 1.93 0.07 7.00 11231 1.87 1.7 1.55 55 1.31 16 1.00 8.1 0.99
SMG2000 4 8.00 159 2.45 47.3 2.43 0.19 19.00 15446 2.58 2.5 2.27 41.88 1.00 16 1.00 8.1 0.99
SMG2000 5 15.63 264 4.06 78.7 4.04 0.51 51.00 25636 4.28 3.8 3.45 55 1.31 17 1.06 8.1 0.99
SMG2000 6 27.00 292 4.49 89.9 4.61 0.87 87.00 27004 4.50 4 3.64 47 1.12 17 1.06 8 0.98
Sphot 5 1.00 16906 1.00 3842 1.00 5722 1.00 4 1.00 4E-04 1.00 0.98 1.00 4 1.00 0 1.00
Sphot 10 4.00 25542 1.51 5659 1.47 9231 1.61 4 1.00 4E-04 1.00 0.98 1.00 4 1.00 0 1.00
Sphot 15 9.00 34552 2.04 7451 1.94 13091 2.29 4 1.00 4E-04 1.00 0.98 1.00 4 1.00 0 1.00
Sphot 20 16.00 40807 2.41 8768 2.28 15644 2.73 4 1.00 4E-04 1.00 0.98 1.00 4 1.00 0 1.00
Sphot 25 25.00 53187 3.15 11649 3.03 20017 3.50 4 1.00 4E-04 1.00 0.98 1.00 4 1.00 0 1.00
Sweep3D 50 1.00 12 1.00 4 1.00 3 1.00 84 1.00 0.25 1.00 3.5 1.00 5 1.00 54.4 1.00
Sweep3D 75 3.38 35 2.92 12 3.00 12 4.00 126 1.50 0.57 2.28 3.5 1.00 5 1.00 54.4 1.00
Sweep3D 100 8.00 75 6.25 27 6.75 30 10.00 168 2.00 1.01 4.04 3.5 1.00 5 1.00 54.4 1.00
Sweep3D 125 15.63 136 11.33 49 12.25 58 19.33 210 2.50 1.58 6.32 3.5 1.00 5 1.00 54.4 1.00
Sweep3D 150 27.00 227 18.92 82 20.50 100 33.33 210 2.50 1.89 7.56 3.5 1.00 5 1.00 54.4 1.00  

Table 3: Problem size scaling results at 64 tasks. Values are per task . 



 
 

 

resource requirements. 
For an increasing number of tasks (Table 2), a 

decrease in computational work can be observed for 
most applications (sPPM, Sphot, Sweep3D). SMG2000 
only exhibits this decrease for the number of floating 
point operations during task scaling. For Samrai, the 
adaptive application, an increase in computation was 
observed for the total number of instructions. Loads 
fluctuated for timestep 4 and increased for timestep 8 
with increasing tasks. Most notably, float ops 
decreased, as in most other applications, which shows 
the effectiveness of task parallelism for adaptive 
methods. The increase in adaptation overhead drives 
this increase in overall instructions. This causes more 
loads on the adaptation phase while loads decrease for 
the floating-point intensive calculations. 

For an increase in problem size (Table 3), all 
instruction categories increase at the same rate for all 
tested applications, except for float ops in the case of 
SMG2000. SMG2000 results in dramatic increases in 
float ops for problem size scaling but the overall ratio to 
other operations is still relatively insignificant. (We had 
to limit the problem sizes for our SMG2000 
experiments because, in our existing experimental 
framework, tracefile sizes grew unmanageable.) 

4.1 Point-to-Point (P2P) Communication 
The majority of applications in our study use point-

to-point communication for sending the lion's share of 
their data. Even though all of the applications use 
similar MPI functionality, we see a diverse set of 
characteristics with respect to the patterns these 
applications exploit in their utilization of point-to-point 
communication. 

The average number of messages sent shows the 
number of point-to-point messages sent by a task while 
the average send volume  quantifies the amount of data 
sent by one task during the observed phase. For task 
scaling in Table 2, the majority of the applications show 
a relationship between processor scaling and the 
number of messages sent. The number of messages 
decreases sharply for Samrai as the number of 
processors increases. In contrast, sPPM and Sweep3D 
appear to be growing yet reaching an asymptotic limit 
as the task count increases. The number of messages for 
SMG2000 declines as the number of tasks increases, 
but the trend is relatively slow. Sphot remains constant 
at 4 messages per task. The send volume for sPPM, 
Sweep3D, and Samrai decreases as processor count 
grows; this indicates that the amount of data sent is tied 
to the local problem size as revealed by the decrease in 
floating point operations. SMG2000 send volume 
increases slightly as the number of tasks expands. 
Interestingly, we believe that SMG2000 is suffering 

from the fact that it must send more data because the 
decomposition becomes more fragmented at higher 
numbers of processors, requiring additional 
communication to converge to a solution [12], even 
though the amount of local work decreases. Not 
surprisingly, Sphot has a constant send volume. 

The average number of distinct destinations 
approximates the number of distinct recipients of point-
to-point sends for a task. Sphot tasks always send all 
data to a single master task (0.98). Predictably, sPPM 
has an average number of distinct destinations that 
approach six for the 3-D mesh structure of sPPM's data 
decomposition. Likewise, Sweep3D approaches four 
due to its 2-D mesh decomposition. On the other hand, 
the number of destinations for a SMG2000 task appears 
to grow in proportion with the task count. The average 
number of destinations for a Samrai task decreases as 
the task count increases. More important are the 
differences between timestep 4 and timestep 8. At 
timestep 8, Samrai has two to three times as many 
destinations as at timestep 4 on average. 

Table 3 shows the impact on changing problem 
sizes on each application. Either the number of 
messages or the message volume (or even both of 
them), depending on the algorithms, increases at the 
same growth rate as the input. For example, as the input 
size increases by a factor of 8 (from 643 to 1283 for 
sPPM), the send volume increases at approximately 
one-half the rate (factor 3.84) while the number of 
messages stays constant. For SMG2000 and Sweep3D, 
both volume and number of messages increase with the 
input. In contrast, Sphot exhibits constant overheads 
independent of the problem size. In general, the 
referenced end-points remain constant (except for 
insignificant variations for SMG2000) with a fixed 
number of tasks. 

In summary, these tables show that varying the 
number of processors or the problem size alters the size 
of messages sent by each application. As Figure 1 (with 
the corresponding numerical values in Table 4) 
illustrates, there is a wide range of message sizes for 
these applications when running at 64 tasks. sPPM and 
Sweep3D have large messages that reflect their data 
decomposition structure while SMG2000 and Samrai 
have smaller messages. Traditionally, communication 
overhead within the communication library dominates 
performance for smaller messages. Our results show 
that with this trend toward smaller messages, 
communication libraries should improve support for 
these messages. For example, small messages can 
capitalize on eager protocols, and suffer when buffer 
management algorithms use ill-suited allocation 
strategies. 
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Figure 1: Payload size distribution for P2P messages (64 tasks). Table 4: Cumulative distribution of payload 
sizes for P2P messages (64 tasks). 
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Figure 2: Payload size distribution for collective communication  
(64 tasks). 

Table 5: Cumulative distribution of payload 
sizes for collective (64 tasks). 

4.2 Collective Communication 
All of our applications use collective operations. 

Many applications that simulate physical systems must 
make several calculations across the domain at every 
timestep to preserve the integrity of the physical system 
and to determine the length of the next timestep. 
Although these calculations are global, the payload size 
is typically only a few double precision numbers. 

In this regard, we found that virtually all of the 
collective operations have very small payloads that 
change neither with the number of tasks nor with the 
problem size. As Figure 2 illustrates, most collective 
operations send data payloads of less than 256 bytes. 
One exception is Sweep3D, which it is the only outlier 

in Figure 2 (with the corresponding numerical values in 
Table 5): it has one broadcast operation whose payload 
size scales linearly with the number of tasks.  

All of the communicator groups were the width of 
the MPI_COMM_WORLD. Although several of the 
applications did create new communicators, they did 
not partition the space of the original communicator. 
The collective operations that perform an operation on 
the data, such as a reduction, were limited to MAX and 
SUM. 

New architectures with tens of thousands or even 
millions of processors [1] must have special support 
for these types of global operations, whether this 
support draws on either hardware assistance or new 



 
 

 

algorithms for collectives, such as MPI_Allreduce. Our 
evidence demonstrates that these applications rely on a 
very limited region of the design space: simple 
reduction operators and very small data payloads. 
Improved performance of collectives may also 
encourage their use in applications. 

4.3 Computation 
To correlate the communication activity with 

computation, we counted several types of events 
between significant MPI call sites. As Tables 2 and 3 
illustrate, the number of floating point operations is 
closely tied to the problem size. The execution 
overhead (both instructions and floating-point only) 
decreases at the same rate that the number of tasks 
increases, which indicates good scaling at the local task 
level. Samrai presents an exception as it exhibits 
increased integer overhead for more tasks (Table 2) that 
results from additional overhead of the mesh refinement 
between time steps. 
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0 89.2 93.5 87.2 94.0 38.3 85.2 
2 89.3 93.5 87.5 94.0 38.3 85.2 
4 89.3 93.5 90.7 94.0 38.6 85.2 
8 89.3 93.5 93.1 94.0 38.6 85.2 

16 89.5 93.9 95.7 94.0 38.6 85.2 
32 90.5 94.7 98.1 94.8 38.6 92.1 
64 95.5 95.8 99.2 95.5 38.6 92.1 

128 96.2 96.4 99.7 95.5 38.6 92.1 
256 97.2 97.2 99.8 95.5 38.6 92.1 
512 97.8 97.7 99.9 95.5 38.6 92.6 

1024 98.2 98.1 100.0 95.5 44.6 92.6 
2048 98.7 98.5 100.0 95.5 44.6 92.6 
4096 98.9 98.9 100.0 95.5 62.1 92.6 
8192 99.1 99.1 100.0 95.5 69.9 92.6 

16384 99.2 99.3 100.0 95.5 71.3 92.6 
32768 99.3 99.3 100.0 95.5 71.3 92.6 
65536 99.4 99.3 100.0 95.5 71.3 92.6 

131072 99.7 99.6 100.0 95.5 71.3 93.0 
262144 99.7 99.7 100.0 95.5 71.3 93.0 
524288 99.7 99.7 100.0 95.5 71.6 93.0 

1048576 99.8 99.7 100.0 95.5 78.9 93.0 
2097152 99.8 99.8 100.0 95.5 78.9 93.0 
4194304 99.9 99.8 100.0 95.5 100.0 93.0 
8388608 99.9 99.9 100.0 95.5 100.0 93.0 

16777216 100.0 100.0 100.0 95.5 100.0 93.0 
33554432 100.0 100.0 100.0 95.5 100.0 93.0 
67108864 100.0 100.0 100.0 95.5 100.0 93.0 
1.34E+08 100.0 100.0 100.0 95.5 100.0 93.0 
2.68E+08 100.0 100.0 100.0 95.5 100.0 93.0 
5.37E+08 100.0 100.0 100.0 100.0 100.0 93.0 
1.07E+09 100.0 100.0 100.0 100.0 100.0 100.0 

Table 6:Cumulative distribution of blocks of floating point 
operations between communication points (64 tasks). 

In an effort to determine the distribution of 

computation relative to communication activity, we 
analyzed the number of floating point operations 
performed between communication operations as Table 
6 depicts. Many of the applications execute few 
floating-point operations, if any, between two 
communication operations. This situation often appears 
when multiple communication operations occur in a 
series, usually following a computational time step. 

Both sPPM and Sphot show that 5-8% of their 
computational blocks are very large, containing over 
536M floating-point operations. In contrast, Samrai and 
SMG2000 perform modest amounts of floating point 
computation between communication operations. 
Compared to these other applications, Sweep3D 
executes over 50% of its floating-point operations in 
multiple blocks of 1024 or greater. 

These results indicate that the dynamic and implicit 
applications tend to communicate more frequently 
relative to its number of floating point operations. That 
is, Samrai and SMG2000 do no more than 8M and 1024 
floating-point operations, respectively, between 
significant communication operations.  

4.4 Observations  
First, we found contemporary, large-scale scientific 

applications have a wide range of characteristics, which 
range from small, frequent messages to large, 
infrequent messages. As similar findings were reported 
for previous studies of scientific applications [9], it is 
remarkable that our results not only strengthen them but 
also provide novel characteristics, as discussed earlier. 

Second, our experiments revealed that collective 
communication operations are used by all the 
applications. Further, the payload size of these 
collective operations is very small and this size remains 
practically invariant with respect to the problem size or 
the number of tasks. Our results show that Allreduce 
and Bcast have very small payloads. This result clearly 
shows that all of the applications in our study could 
benefit from improvements in the performance of 
collective communications, whether those 
improvements come in hardware or software. 
Historically, collective communication often suffered 
from high performance overhead due to a lack of 
scalability, which often forced application programmers 
to hand-code collectives with a series of point-to-point 
messages. Once these legacy communication patterns 
are transformed into collectives, the importance of 
collectives is most likely to grow. 

Third, we also note a substantial difference in 
algorithms in terms of their increasing message and 
computation activities over consecutive time steps: 
implicit versus explicit methods, and uniform mesh 
versus adaptive mesh. Sweep3D and sPPM use explicit 
methods and uniform meshes, which lead to easily 
predicted communication patterns. On the other hand, 



 
 

 

Samrai's adaptive mesh refinement can make both the 
communication patterns and computational load 
difficult to predict as Table 2 shows. Likewise, the 
implicit techniques used in SMG2000 have 
considerably different communication requirements 
than the explicit techniques. 

5 Related Work 
Characterization of applications and architectures 

is an ongoing and important process as evidenced by 
the considerable amount of previous work [3, 5, 7, 9, 
15, 24-26]. With the broad range of design parameters 
for today's computer systems and the fact that both 
applications and architectures evolve, these quantitative 
evaluations help focus attention on important design 
points. 

In the past, synthetic kernel benchmarks were often 
used to evaluate and compare architectures, e.g., using 
Linpack on parallel machines [2]. The NAS parallel 
benchmarks [3] consist of small kernels and 
applications; they have been used by a large number of 
groups for performance evaluation of architectures. 
These benchmarks have been adapted to a wide range 
of platforms and programming models [5, 6]. The 
SPLASH-2 suite of parallel applications is another 
example of widely used benchmarks [25], which are 
targeted toward centralized and distributed shared-
address-space multiprocessors but does not capture the 
challenges of parallelism in cluster computing. Worley 
[26] presents a detailed comparison of a climate 
modeling application that uses explicit communication 
on two different platforms. Prior work has also focuses 
on the differences between commercial and scientific 
workloads [8, 17]. Our choice of scientific applications 
for benchmarks specifically considers appropriate 
programming paradigms for clusters with an emphasis 
on message passing, large scientific codes and a 
diversity in application characteristics as well as 
domains.  

The two most closely related papers to the work 
that we present here are work by Wong and associates 
[24] and by Cypher and colleagues [9]. Wong and 
associates [24] studied the effect of different 
architectural parameters on the NAS parallel 
benchmarks using a methodology similar to ours. They 
captured information about the message and instruction 
behaviors of these much smaller benchmarks to 
understand communication and simulate caching 
behavior on different architectures. Cypher and 
colleagues [9] quantitatively characterize the behavior 
of numerous scientific applications that use explicit 
communication. In particular, they report on floating-
point operations, memory size, I/O, and communication 
in order to help design well-balanced architectures. 
More importantly, they demonstrate the effects of 

scaling problem size and the number of processors for 
these application characteristics. Our results strengthen 
these previous results in showing their validity for 
larger scientific applications on contemporary clusters 
and indicate new trends in application behavior well 
beyond previous work.  

6 Conclusions 
In this paper, we evaluated explicit communication 

characteristics across a set of diverse, large-scale 
scientific applications, primarily from the perspective 
of message passing via MPI and independent of the 
target architecture. By focusing on the MPI activity of 
these applications along with coarse-grain 
measurements of the computation, we separate the 
application behavior from the architecture behavior and 
present the inherent communication signatures of these 
diverse applications. 

Our results do not only strengthen findings of 
studies with smaller applications and reinforce 
differences in application behavior. We also uncovered 
striking similarities, such as the trend of small payload 
sizes for collective operations, which are significant due 
to the increasing acceptance of more efficient 
implementation of collectives. Collectives with 
competitive scaling capabilities should ensure that 
collectives become more widely used. We also 
highlight novel applications parting with regimented, 
static communication patterns in favor of dynamically 
evolving patterns as evidenced by our experiments on 
applications that use implicit linear solvers and adaptive 
mesh refinement. Clearly, these investigations will 
continue to be important as new applications, 
architectures, and software becomes available. 

Overall, our study contributes a better 
understanding of the demands for current and emerging 
paradigms of scientific computing in terms of their 
computation and communication demands. 
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